MLOPS: 5 trin til operationelisering af maskinlæringsmodeller
I dag driver kunstig intelligens (AI) og maskinlæring (ML) de datadrevne fremskridt, der transformerer industrier over hele verden. Virksomheder løber for at udnytte AI og ML for at beslaglægge konkurrencefordel og levere spilændrende innovation. Men AI og ML er data-sultne processer. De kræver ny ekspertise og nye kapaciteter, herunder datavidenskab og et middel til at operationalisere arbejdet med at opbygge AI- og ML -modeller.
Læs nu for at opdage mere om AI og ML, og hvordan man automatiserer og produktiserer maskinlæringsalgoritmer.
Læs mere
Ved at indsende denne formular accepterer du Informatica kontakte dig med marketingrelaterede e-mails eller telefonisk. Du kan til enhver tid afmelde dig. Informaticawebsteder og kommunikation er underlagt deres fortrolighedserklæring.
Ved at anmode om denne ressource accepterer du vores brugsbetingelser. Alle data er beskyttet af voresBekendtgørelse om beskyttelse af personlige oplysninger. Hvis du har yderligere spørgsmål, så send en e-mail dataprotection@techpublishhub.com
Relaterede kategorier: Analytics, Applikationer, Big data, Databaser, Datalagring, Datastyring, DevOps, Digital transformation, Enterprise Cloud, ERP, IoT, Kunstig intelligens, Maskinelæring, Opbevaring, Samarbejde, San, Server, SIGTE, Sky, Software
Flere ressourcer fra Informatica
Flytter til et cloud -datalager på Amazon Re...
Udfordringen for dagens virksomheder er at udtrække den mest værdi af deres data. For at gøre dette flytter virksomhederne deres analyse -arbejd...
Kunde 360 til dummies
Vidste du, at cirka 300 milliarder e -mails sendes hver dag, og at omkring halvdelen af al e -mail -trafik betragtes som spam? At sende dine ...
Fire fordele ved stor tid ved at opbygge en d...
Chief Data Officers (CDOS) og Chief Data Analytics Officers (CDAOS) har nu nået et drejepunkt. I de tidlige dage af disse roller var deres mål kl...